Levenberg-Marquardt Recurrent Networks for Long-Term Electricity Peak Load Forecasting
نویسندگان
چکیده
منابع مشابه
Levenberg-Marquardt Recurrent Networks for Long- Term Electricity Peak Load Forecasting
Increasing electricity demand in Java-Madura-Bali, Indonesia, must be addressed appropriately to avoid blackout by determining accurate peak load forecasting. Econometric approach may not be sufficient to handle this problem due to limitation in modelling nonlinear interaction of factors involved. To overcome this problem, Elman and Jordan Recurrent Neural Network based on Levenberg-Marquardt l...
متن کاملEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملLong-Term Peak Demand Forecasting by Using Radial Basis Function Neural Networks
Prediction of peak loads in Iran up to year 2011 is discussed using the Radial Basis Function Networks (RBFNs). In this study, total system load forecast reflecting the current and future trends is carried out for global grid of Iran. Predictions were done for target years 2007 to 2011 respectively. Unlike short-term load forecasting, long-term load forecasting is mainly affected by economy...
متن کاملLevenberg-Marquardt Algorithm for Karachi Stock Exchange Share Rates Forecasting
Financial forecasting is an example of signal processing problems. A number of ways to train/learn the network are available. We have used Levenberg-Marquardt algorithm for error back-propagation for weight adjustment. Pre-processing of data has reduced much of the variation at large scale to small scale, reducing the variation of training data. Keywords— Gradient descent method, jacobian matri...
متن کاملAuto-regressive Recurrent Neural Network Approach for Electricity Load Forecasting
this paper presents an auto-regressive network called the Auto-Regressive Multi-Context Recurrent Neural Network (ARMCRN), which forecasts the daily peak load for two large power plant systems. The auto-regressive network is a combination of both recurrent and non-recurrent networks. Weather component variables are the key elements in forecasting because any change in these variables affects th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TELKOMNIKA (Telecommunication Computing Electronics and Control)
سال: 2011
ISSN: 2302-9293,1693-6930
DOI: 10.12928/telkomnika.v9i2.696